172 research outputs found

    Measurement of multispecies concentration and gas temperature in an ammonium-dinitramide-based thruster by tunable diode lasers

    Get PDF
    In this paper, quantitative experiments were made to measure the concentration of key intermediate products (CO, N2O, and NO) and the gas temperature for combustion flow based on near-infrared and mid-infrared laser absorption spectroscopy. This paper used the developed diagnostic system to study two main ignition modes of a real 1-Newton thruster based on ammonium dinitramide (ADN): steady-state firing and pulse-mode firing over a feed pressure of 5-12 bar. The steady-state firing experiments distinguished the whole process into catalytic decomposition stage and combustion stage, experimentally demonstrating the combustion kinetics mechanism of an ADN monopropellant. Experiments for pulse-mode firing showed the measured multispecies concentration and temperature were consistent with pulse trains, verifying good performance for the thruster pulse-mode firing operation. The performance of the thruster was given based on the optical measurements, and characteristic velocity for the ADN-based thruster standard operation was higher than the corresponding 1-Newton hydrazine thruster. (C) 2018 Optical Society of America</p

    Routes for breaching and protecting genetic privacy

    Full text link
    We are entering the era of ubiquitous genetic information for research, clinical care, and personal curiosity. Sharing these datasets is vital for rapid progress in understanding the genetic basis of human diseases. However, one growing concern is the ability to protect the genetic privacy of the data originators. Here, we technically map threats to genetic privacy and discuss potential mitigation strategies for privacy-preserving dissemination of genetic data.Comment: Draft for comment

    Fe3O4–Au and Fe2O3–Au Hybrid Nanorods: Layer-by-Layer Assembly Synthesis and Their Magnetic and Optical Properties

    Get PDF
    A layer-by-layer technique has been developed to synthesize FeOOH–Au hybrid nanorods that can be transformed into Fe2O3–Au and Fe3O4–Au hybrid nanorods via controllable annealing process. The homogenous deposition of Au nanoparticles onto the surface of FeOOH nanorods can be attributed to the strong electrostatic attraction between metal ions and polyelectrolyte-modified FeOOH nanorods. The annealing atmosphere controls the phase transformation from FeOOH–Au to Fe3O4–Au and α-Fe2O3–Au. Moreover, the magnetic and optical properties of as-synthesized Fe2O3–Au and Fe3O4–Au hybrid nanorods have been investigated

    Inhibition or knock out of Inducible nitric oxide synthase result in resistance to bleomycin-induced lung injury

    Get PDF
    BACKGROUND: In the present study, by comparing the responses in wild-type mice (WT) and mice lacking (KO) the inducible (or type 2) nitric oxide synthase (iNOS), we investigated the role played by iNOS in the development of on the lung injury caused by bleomycin administration. When compared to bleomycin-treated iNOSWT mice, iNOSKO mice, which had received bleomycin, exhibited a reduced degree of the (i) lost of body weight, (ii) mortality rate, (iii) infiltration of the lung with polymorphonuclear neutrophils (MPO activity), (iv) edema formation, (v) histological evidence of lung injury, (vi) lung collagen deposition and (vii) lung Transforming Growth Factor beta1 (TGF-β1) expression. METHODS: Mice subjected to intratracheal administration of bleomycin developed a significant lung injury. Immunohistochemical analysis for nitrotyrosine revealed a positive staining in lungs from bleomycin-treated iNOSWT mice. RESULTS: The intensity and degree of nitrotyrosine staining was markedly reduced in tissue section from bleomycin-iNOSKO mice. Treatment of iNOSWT mice with of GW274150, a novel, potent and selective inhibitor of iNOS activity (5 mg/kg i.p.) also significantly attenuated all of the above indicators of lung damage and inflammation. CONCLUSION: Taken together, our results clearly demonstrate that iNOS plays an important role in the lung injury induced by bleomycin in the mice

    Suppression of uPA and uPAR Attenuates Angiogenin Mediated Angiogenesis in Endothelial and Glioblastoma Cell Lines

    Get PDF
    In our earlier reports, we showed that downregulation of uPA and uPAR inhibited glioma tumor angiogenesis in SNB19 cells, and intraperitoneal injection of a hairpin shRNA expressing plasmid targeting uPA and uPAR inhibited angiogenesis in nude mice. The exact mechanism by which inhibition of angiogenesis takes place is not clearly understood.In the present study, we have attempted to investigate the mechanism by which uPA/uPAR downregulation by shRNA inhibits angiogenesis in endothelial and glioblastoma cell lines. uPA/uPAR downregulation by shRNA in U87 MG and U87 SPARC co-cultures with endothelial cells inhibited angiogenesis as assessed by in vitro angiogenesis assay and in vivo dorsal skin-fold chamber model in nude mice. Protein antibody array analysis of co-cultures of U87 and U87 SPARC cells with endothelial cells treated with pU2 (shRNA against uPA and uPAR) showed decreased angiogenin secretion and angiopoietin-1 as well as several other pro-angiogenic molecules. Therefore, we investigated the role of angiogenin and found that nuclear translocation, ribonucleolytic and 45S rRNA synthesis, which are all critical for angiogenic function of angiogenin, were significantly inhibited in endothelial cells transfected with uPA, uPAR and uPA/uPAR when compared with controls. Moreover, uPA and uPAR downregulation significantly inhibited the phosphorylation of Tie-2 receptor and also down regulated FKHR activation in the nucleus of endothelial cells via the GRB2/AKT/BAD pathway. Treatment of endothelial cells with ruPA increased angiogenin secretion and angiogenin expression as determined by ELISA and western blotting in a dose-dependent manner. The amino terminal fragment of uPA down regulated ruPA-induced angiogenin in endothelial cells, thereby suggesting that uPA plays a critical role in positively regulating angiogenin in glioblastoma cells.Taken together, our results suggest that uPA/uPAR downregulation suppresses angiogenesis in endothelial cells induced by glioblastoma cell lines partially by downregulation of angiogenin and by inhibition of the angiopoietin-1/AKT/FKHR pathway

    Spin transport and spin torque in antiferromagnetic devices

    Get PDF
    Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets which represent the more common form of magnetically ordered materials, have found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstration of the electrical switching and detection of the Néel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated from antiferromagnets can be inherently multilevel, which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanical origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices

    Graphene in Lithium-Ion/Lithium-Sulfur Batteries

    Get PDF
    In order to deal with the energy demand of the increasing global population,the use of sustainable sources of energy has become mandatory to attenuate theenvironmental problems that come along with the use of fossil sources of energy.However, one of the problems of renewable energy sources, such as wind or sun,is that they are intermittent. So, in order to make the best use of them, we needgood energy storage systems able to capture, manage and store energy at a largescale and low cost. If we are also capable of replacing the gasoline powered transportationwith electric vehicles, the greenhouse emissions would be significantlyreduced. As well, it is necessary a change in the energetic matrix for stationarydevices to solve the transport cost and the greenhouse emission provokes for theuse of natural gas. Considering this, the major promises to accomplish the needsof high gravimetric, volumetric and power density is given by lithium batteries.In the past decades and up to nowadays, they have become the energy source ofalmost all electronic portable devices and made possible a huge number of technologicalapplications. Graphene based materials, due to their unique properties,have become of great interest to be used in different components of the battery:anode, cathode and separator. As part of the electrodes, used adequately, graphenematerials improve the electron and ionic mobility providing not only higher electricalconductivity, but also higher capacity. Due to the rich carbon chemistry,graphene can be easily functionalized with different groups leading to changes inits properties. In this sense, the nano-sized dimension and elevated specific surfacearea makes it a perfect candidate for improving conductivity, connectivity andlithium-ion transport in both cathode and anode active materials. Functionalizedgraphene is also used in the modification of separators of lithium-sulfur batteriesfor the suppression of the polysulfide shuttle mechanism due to its interaction/repulsion with the charged intermediate polysulfide species. This chapter presentsa critical overview of the state-of-art in the optimization and application ofgraphene derived materials for anodes, cathodes and separators in lithium batteries.Besides a thorough description of novel designs and general discussion of theattained electrochemical performances, this chapter also aims to discuss desiredproperties and current drawbacks for massive industrial application in lithiumbatteries.Fil: Luque, Guillermina Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Para, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Primo, Emiliano Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Calderón, Andrea Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Bracamonte, Maria Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Otero, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Rojas, María del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: García Soriano, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Lener, German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentin

    Quality of life data as prognostic indicators of survival in cancer patients: an overview of the literature from 1982 to 2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health-related quality of life and survival are two important outcome measures in cancer research and practice. The aim of this paper is to examine the relationship between quality of life data and survival time in cancer patients.</p> <p>Methods</p> <p>A review was undertaken of all the full publications in the English language biomedical journals between 1982 and 2008. The search was limited to cancer, and included the combination of keywords 'quality of life', 'patient reported-outcomes' 'prognostic', 'predictor', 'predictive' and 'survival' that appeared in the titles of the publications. In addition, each study was examined to ensure that it used multivariate analysis. Purely psychological studies were excluded. A manual search was also performed to include additional papers of potential interest.</p> <p>Results</p> <p>A total of 451 citations were identified in this rapid and systematic review of the literature. Of these, 104 citations on the relationship between quality of life and survival were found to be relevant and were further examined. The findings are summarized under different headings: heterogeneous samples of cancer patients, lung cancer, breast cancer, gastro-oesophageal cancers, colorectal cancer, head and neck cancer, melanoma and other cancers. With few exceptions, the findings showed that quality of life data or some aspects of quality of life measures were significant independent predictors of survival duration. Global quality of life, functioning domains and symptom scores - such as appetite loss, fatigue and pain - were the most important indicators, individually or in combination, for predicting survival times in cancer patients after adjusting for one or more demographic and known clinical prognostic factors.</p> <p>Conclusion</p> <p>This review provides evidence for a positive relationship between quality of life data or some quality of life measures and the survival duration of cancer patients. Pre-treatment (baseline) quality of life data appeared to provide the most reliable information for helping clinicians to establish prognostic criteria for treating their cancer patients. It is recommended that future studies should use valid instruments, apply sound methodological approaches and adequate multivariate statistical analyses adjusted for socio-demographic characteristics and known clinical prognostic factors with a satisfactory validation strategy. This strategy is likely to yield more accurate and specific quality of life-related prognostic variables for specific cancers.</p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore